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A new algorithm is described for the Monte Carlo simulation of spin-exchange kinetics of 
lsing model on a square lattice with nearest- and next-nearest-neighbor interactions. For 
sampling the equilibrium ensemble of such a system at 50% concentration this algorithm is as 
efficient as the standard algorithm at about T/T, = 0.78 for a 40 x 40 lattice and at about 
T/T, = 0.70 for a 80 x 80 lattice. At lower temperatures its efficiency rapidly increases, while 
at lower concentrations one has to go to still lower temperatures before this algorithm 
becomes as efficient as the standard algorithm. For the domain growth studies this algorithm 
is orders of magnitude less efficient than the standard algorithm during the initial phases of 
the time evolution of such systems quenched from high temperatures to below their critical 
temperatures. For quenches to T/T, = 0.34 at 50% concentration the present algorithm 
becomes as efficient as the standard algorithm after about 1000 MCS (Monte Carlo steps/par 
title) for a 40 x 40 lattice and after about 3000 MCS for a 120 x 120 lattice. 

I. INTRODUCTION 

The Monte Carlo computer simulation method has evolved into a powerful tool for 
studying the equilibrium and transport properties and the approach towatds 
equilibrium of physical systems [ 11. The model system most extensively used in such 
studies is the Ising lattice gas described by the Hamiltonian (21 

(1) 

where ,ui is the chemical potential, $ij is the pairwise interaction parameter and n, is 
the occupation variable associated with the ith lattice site such that ni = 1 if the ith 
site is occupied and it is zero otherwise. The sum is taken over all the pairs of 
particles with non-zero dij. 

In order to study the dynamics of the configurations of such a system, one further 
assumes that its particles are in thermal contact with a heat bath which induces 
spontaneous transitions in the system. The probabilities of such transitions, among 
other things, depend on the temperature, T, of the heat bath and the energy changes, 
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6H, involved in these transitions. In the case of the particle-hole exchange 
(Kawasaki) dynamics of interest to us here such a transition probability which is 
consistent with the detailed balance condition may be written as [2, 3) 

t, W(n, -+ n,J T (1 - Hi) = 
exp(-6H/k, T) n, 

- (1 - ?Q,). 
1 + exp(-6H/k, T) c (2) 

Here r, is an undetermined time constant which we put equal to unity by measuring 
time in Monte Carlo steps/particle (MCS), k, is the Boltzmann constant and c is the 
concentration of the system. 

In the standard Monte Carlo algorithm one generates new configurations as 
follows [ 1,4]. (i) An occupied site, i, and its nearest-neighboring site, li, are chosen 
at random. (ii) When Ei is empty then the energy required to move the particle into 
the empty site, 6H, is calculated, otherwise the move is rejected and a new pair of 
sites is similarly chosen. (iii) A random number, R, uniformly distributed between 
zero and unity is chosen, and the particle is moved into the empty site, Ii, when R is 
less than the transition probability, W, given by Eq. (2). 

For temperatures below the critical temperature of the system the probability of a 
successful move, P,, sharply decreases with temperature (Fig. l), resulting in the 
rejection of most of the attempted moves, and thus a lot of the computer time is 
wasted in attempting unsuccessful moves. In order to avoid such a waste of computer 
time, Bortz et al. [5] proposed an efficient Monte Carlo algorithm for the spin-flip- 
(Glauber-) dynamics of Ising systems. In their study of the time evolution of binary 
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FIG. 1. Probability of a uccessful move, P,, as a function of temperature, T, for a square Ising 
lattice gas with equal nearest- and next-nearest-neighbor repulsions for various concentrations as 
indicated in the figure. T is normalized by the critical temperature T, approximate for 0 = 0.5. 
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alloys they also made use of an algorithm which was intermediate between their new 
algorithm and the standard algorithm [6]. 

Here we describe a new algorithm for the Monte Carlo simulation of an Ising 
system on a square lattice with nearest- and next-nearest-neighbor interactions. In this 
algorithm bonds are randomly chosen only from “active bonds” (i.e., bonds joining 
nearest-neighboring occupied and empty sites) and the particles are always moved. 
The time is appropriatedly updated so as to make the results of this algorithm 
consistent with those of the standard algorithm. The details of this algorithm are 
described in Section II. In Section III we present some results for sampling the 
equilibrium configurations and for the approach towards equilibrium of such a 
system. Finally, in Section IV, we give our conclusions and comment on the range of 
applicability and possible extensions of this algorithm. 

II. METHOD 

11.1. The Bond Algorithm 

The emphasis in the standard algorithm for the Kawasaki dynamics is on the sites 
of the lattice and may, therefore, also be referred to as the site algorithm (or SA). In 
contrast, the emphasis in the present algorithm will be on the bonds of the lattice and 
we will, therefore, also refer to it as the bond algorithm (or BA). 

Since a square lattice of N sites has 2N bonds we assign two bonds to each lattice 
site, an x- and a y-bond. These bonds are classified into active and inactive bonds, 
where active bonds joining occupied sites with nearest-neighboring empty sites. 
Except for updating purposes, inactive bonds will be ignored in BA. For an Ising 
lattice gas on a square lattice with equal nearest- and next-nearest-neighbor 
interactions, the energy required to move a particle at the ith site to a nearest- 
neighboring empty site, li, is, modulo sign, given by (see Fig. 2) 

6H = 2x1, = 4x[n, + n2 + n3 - (n, + n, + n,)], 
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FIG. 2. The neighborhood of a bond which has been randomly chosen (-), along with bonds not 
affected by the move (,..), bonds for which both activities and energies need to be updated (---) and 
bonds for which only energies need to be updated ( - -). 



390 ABDULLAH SADIQ 

or 

I, = 2x[n, + n* + nj - (n, + n, + n,)]. (3) 

The energy index, I,, given by Eq. (3) is a priori calculated for each bond. Since 
-6 <I, < 6, a factor of 20 is arbitrarily added to I, corresponding to inactive bonds, 

I, + I, + 20, 

so that I, > 6 for these bonds. This fact is subsequently used to distinguish between 
active and inactive bonds. An array Iz is used for storing the particle (spin) 
configurations of the system and arrays ZHx and IHy are used for storing the energy 
indices of x- and y-bonds, respectively. 

Active bonds are grouped in seven classes, where the class index I, is related to its 
energy index, I,, by the simple relation 

I, = (I, + q/2. (4) 

The number of x- (y-) bonds in each class is stored into the array E (8’) and these 
active bonds are labelled starting from bonds with the smallest class index (i.e., 
I, = 1). These labels are stored into an array LBx (LBy) and the x- and the y- 
coordinates of a bond of a given label are stored into arrays IKp, ZLp (IKo, ZLo), 
respectively. Thus given a label one can locate the coordinates of a bond and vice 
versa. 

New configurations of the system are generated by randomly picking a bond from 
among the active bonds of the system and interchanging the empty and occupied sites 
across it. In order that new configurations in BA are chosen with the same a priori 
probability as those in SA seven numbers are calculated for each one of the seven 
classes of the x- (y-) active bonds as follows: 

Pi = c Ej x Wj 
j=l 

Qi= i FjX wj 

j=l 1 
(5) 

where Wj is the transition probability of the jth class given by Eq. (2). A random 
number, R, uniformly distributed between 0 and (P, + Q,) is then chosen. For R > P, 
the active bond chosen is the y-direction, otherwise it is in the x-direction. The same 
random number, R, is also used to calculate the class index (and therefore the energy 
index) as well as the specific label, L, of the chosen bond. For, if 

then 

I, = i, I, = 2I, - 8, 
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and 

L-l= (R -pi-l)/wi9 I, > 1 

R/W,, I,= 1. 

11.2. Updating Energy Indices, Labels and Activities of Bonds 
Interchanging particle and a hole across an active bond, in addition to changing its 

energy index and consequently its label, may also change the activities, energy indices 
and labels of its neighboring bonds. For the system under consideration, there are 30 
such neighboring bonds (Fig. 2). For the specific case of an Ising lattice gas with 
equal nearest- and next-nearest-neighboring interactions in which we are interested, 
10 of these bonds (dotted lines in Fig. 2) are not affected by such a move. The bond 
which has been randomly picked (dark line in Fig. 2) remains active after the move, 
only its energy and label needing to be updated. For the six neighboring bonds 
touching this bond (dashed lines in Fig. 2) both the spin configuration and the energy 
change. Those of these bonds which were inactive become active and vice versa. The 
bonds which become inactive are removed from the list of active bonds and those 
which become active are included in this list with their specific energy indices and 
labels. For the rest of the 14 bonds which are not touching the chosen bond (dash- 
dotted lines in Fig. 2) only the energy indices are affected by the move. In this case, 
therefore, the activity of the bonds is not affected, and only the energy indices and the 
labels of the active bonds among these need to be updated. 

11.3. Time Scale 

A crucial element for BA, as indeed for the new algorithm of Bortz et al. [5], is the 
proper definition of the time scale. In the lattice gas version of SA, time is defined in 
Monte Carlo steps per particle (MCS), so that during such a unit of time each 
particle in the system, on the average, has a chance to move once. If N, is the 
number of particles in the system and P, is the probability of a successful move, then 
there will be, on the average, N,P, successful moves during this unit of time. In other 
words, on the average, there is one successful move during every l/(N,P,) MCS. In 
BA, on the other hand, every attempted move is a successful move. The time scale in 
this algorithm may, therefore, be made to correspond to that of SA by advancing it 
by an amount 

1 
At=- 

N,Ps ’ 
(6) 

MCS after every move. Also since in the SA bonds were chosen from among N, out 
of the ZN,, possible bonds, Z being the coordination number of the lattice, while in 
the present algorithm bonds are chosen from among the N, active bonds. Resealing 
At by the ratio of these two numbers, we get 

Z 
At=- 

N,P, ’ 
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At zero temperature the definition of active bonds is further restricted because at 
this temperature only those moves are allowed which do not increase the total energy 
of the system. 

From Eq. (2) one may write 

P,=vW 

where v is the vacancy availability factor, i.e., the probability of finding a vacant site 
which is nearest neighbor of an occupied site, and W is the transition probability of 
moving a particle from an occupied site into such a vacant site. In Eq. (7) the local 
instantaneous values of both v and W as well as the instantaneous value of N, will be 
used. At very low temperatures this will give rise to large fluctuations in At due to the 
occasional but random choices of bonds with very small values of P,. These fluc- 
tuations can be smoothed out by replacing W in Eq. (7) by its instantaneous average 
value given by [see Eq. (5) [5]], 

wJ,+Q, 
ZN ’ 

so that 

Z*N 

At = N,v(P, + Q,) ’ (8) 

III. RESULTS 

To explore the conditions under which BA is more efficient than SA parallel runs 
were made with two programmes which were identical, except that in one case 
configurations were generated with SA while in the other case these were generated 
with BA. Also, in view of the phase diagram of the system under consideration 
(Fig. 3) the equilibrium ensemble of this system was sampled at 50% and at 25 % 
concentration at temperatures below the critical temperatures at these two concen- 
trations. 

Each successful move in BA involves updating the energies and labels of 21 bonds, 
while updating the label of a bond itself involves about +N, P, operations. Also, since 
the time in BA increases inversely as P,, we expect BA to be as efficient as SA for 
values of P, given by 

so that at 50% concentration one gets P, N l/w, N being the lattice size. For a 
40 X 40 lattice we get P, N 0.008, corresponding to T/T, = 0.75 (see Fig. 1). 

The results of our calculations for the relative efficiency of BA compared to that of 
SA, t,/t,, for sampling the equilibrium configurations 40 X 40 and 80 X 80 lattices 
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FIG. 3. Part of the phase diagram of a square Ising lattice gas with equal nearest- and next-nearest- 
neighbor repulsions (from Ref. 191). 

are given in Fig. 4. At 50% concentration BA becomes as efficient as SA at 
T/T, N 0.78 and at T/T, N 0.7 for these two lattice sizes consistent with Eq. (9). At 
25 %, the corresponding temperatures are T/T, = 0.29 and T/T, = 0.15, respectively. 

For studying the domain growth of quenched systems the initial time evolution of 
the system after its disordered phase was quenched into its ordered phase was done 
with SA. The subsequent time evolution of the system after P, had evolved to values 
smaller than the values given by Eq. (9) ( see Fig. 5) was done with BA. This 
calculation was carried out to check not only the relative efficiency of BA but also to 
check the consistency of the definition of time given by Eq. (7). The results of this 
calculation for the time evolution of the energy for 80 x 80 and 120 x 120 lattices at 
T/T, = 0.6, 0.34 and 0.0 are shown in Fig. 6. In this figure, the open symbols refer to 
the results obtained with BA and the solid symbols correspond to the results obtained 
with SA. The continuity of the points from SA into BA seen in this figure illustrates 
that the definition of time being used in BA (Eq. (7)) is consistent with that of SA. 

FIG. 4. Relative efficiency of bond algorithm compared to the site algorithm as a function of 
temperature for 40 x 40 (circles) and 80 x 80 (triangles) lattices at 50% and 25% concentrations. The 
two algorithms are equally efficient along the dotted line while solid lines are drawn to guide the eye. 

581!55/3-4 
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FIG. 5. Probability of a successful move, P,(t), as a function of time in Monte Carlo steps/particle 
after a high-temperature state of the system is quenced below its critical temperature at 50% concen- 
tration. The dashed line indicates the value of P, for which the bond algorithm becomes as efficient as 
the site algorithm for a 40 x 40 lattice. The solid lines are drawn to guide the eye. 

As is evident from Figs. 1 and 5, the use of BA in domain growth studies will 
helpful only at temperatures lower than T/T, 2: 0.5, after evolving the system with SA 
for several thousand MCS. The use of BA at T/T, = 0.6, for a 120 x 120 lattice, for 
example, is only about 60% as effkient as that of SA after the system had been 
evolved with SA for 4000 MCS (see Fig. 6a). At T/T, = 0.34, on the other hand, BA 
is 10-15 times as efficient as SA (Fig. 6b). The relative effkiency of BA at zero 
temperature is again somewhat lower as at this temperature the system freezes in 
metastable configurations and it does not seem to evolve towards its ground state. 

loo 10' lo2 lo3 lo4 
t(MCS1 

FIG. 6. Evolution of energy, c&(t) = E(t) - (E), with time, I, after the system is quenched from high 
temperature to below its critical temperature at 50% concentration for 80 x 80 (triangles) and 
120 x 120 (circles) lattices. Open symbols are data taken with the bond algorithm and solid symbols are 

data taken with site algorithm. The temperatures to which the system is quenched are shown in the 
figure. The solid lines are taken from Ref. [8]. The relative efficiencies of the bond algorithm, t,/t,, for 
the (80 x 80) and (120 x 120) lattices, respectively, are (a) 2.0, 0.5, (b) 10.0, 15.0 and (c) 2.0, 0.74. 
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FIG. 7. Order parameter a (2 X 2).structure as a function of time for 20 x 20, 40 X 40, 80 X 80 and 
120 X 120 lattices at T/T, = 0.22 and c = 0.25. 

The bond algorithm could also be used for studying the stability of very low- 
temperature phases against thermal fluctuations. Such a study may be of some help 
to clarify the nature of some low-temperature phases, e.g., the nature of the phase at 
0.25 % concentration below T/T, = 0.45 in the system under consideration, which is 
still not quite clear 171. This can be done by starting with a possible ground state 
phase of the system at the concentration of interest and then studying the stability of 
this phase at various temperatures in the relevant part of the phase diagram. 
Preliminary results of such a study for (2 x 2)-phase at T/T, = 0.22 are shown in 
Fig. 7. As is evident from this figure, such a study with SA would be prohibitively 
time consuming. 

IV. CONCLUSIONS 

The bond algorithm described in this paper should be very helpful for studying the 
static and dynamic aspects of Ising lattice gases and similar systems (Potts models, 
etc.) which manifest themselves at very low temperatures and/or very high densities. 
For example, apart from studying the nature of the low-temperature phases in some 
of these systems mentioned in the last section, this algorithm would also be very 
useful in further illuminating the structure observed in the tracer and collective 
diffusion coefficients of adsorbed monolayers at very low temperatures [2]. Its 
application in domain growth studies, though somewhat limited, can still be very 
helpful in deep quenches and in quenches close to the higher density phase boundary. 
The use of such an algorithm will be particularly helpful for studying Ising lattice 
gases where atoms tend to cluster together in the ordered phase, since in this case the 
drastic reduction in the vacancy availability factor will further enhance the relative 
efficiency of this algorithm. We emphasize that although the efficiency of the present 



396 ABDULLAH SADIQ 

algorithm decreases with increasing system size (as more and more time is spent in 
updating the classification scheme of the active bonds), it still is orders of magnitude 
quicker than the standard algorithm in some cases of interest. 
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